Series 3

- 1. Problem 2.23 from the textbook (1d only)
- 2. Simulations of a single-species annihilation reaction on hypercubic lattices as a function of the lattice spatial dimension d.

Consider lattice dimensions $d \le 3$, and choose a lattice size L large enough (such that the results do not depend on L). For d=2,3 hypercubic lattices. Apply periodic boundary conditions in all lattice directions. Introduce the lattice site occupation variable

$$\rho(x,t) = 1$$
, if x is occupied 0, if x is empty

Assume $\rho(x, t = 0) = 1$, for all x.

Simulation approach 1

At each time step Δt

- 1. Choose one lattice site randomly
- 2. A) If the chosen lattice site is occupied by a particle ($\rho=1$ on that site), that particle performs one random jump to one of the neighboring lattice sites with the probabilities

$$p = \frac{1}{2} in \ d = 1$$
, $\frac{1}{4} in \ d = 2$, $\frac{1}{8} in \ d = 3$

If the new position is occupied, annihilate both particles (set $\rho=0$ on the sites from where the particle started and ended). If the new position is empty, the particle stops at the new position. Go to item #3 below.

- B) If the chosen lattice site is empty, do nothing and go to item #3 below.
- 3. Update time $t_{n+1} = t_n + \Delta t$

Plot the average (over many simulations with different seeds for the random number generator) number density $\rho(t)=\frac{N_occupied(t)}{L^d}$ as a function of time for d=1,2,3. In this approach $\Delta t \propto \frac{1}{L^d}$.

Simulation approach 2, "rejection free"

A randomly chosen lattice site must be occupied. All the other steps are as above. For this you will need at each time a list of occupied lattice sites (keep in mind that the list is time-dependent).

In this approach the time step $\Delta t(t) \propto \frac{1}{\rho(t)} \frac{1}{L^d} = \frac{L^d}{N_{occupied}(t)} \frac{1}{L^d} = \frac{1}{N_{occupied}(t)}$.

Plot the average number density $\rho(t) = \frac{N_occupied(t)}{L^d}$ as a function of time for d=1,2,3.